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Abstract

The theory of fundamental boundary eigensolutions for elastostatic boundary value problems is developed. The
underlying fundamental eigenproblem is formed by inserting the eigenparameter and a tensor weight function into
the boundary condition, rather than into the governing differential equation as is often done for vibration problems.
The resulting spectra are real and the eigenfunctions (eigendeformations) are mutually orthogonal on the boundary,
thus providing a basis for solutions. The weight function permits effective treatment of non-smooth problems associated
with cracks, notches and mixed boundary conditions. Several ideas related to the behavior of eigensolutions in the
domain, integral equation methods, variational methods, convergence characteristics, flexibility and stiffness kernels,
and solutions to problems with body forces are also introduced. Of particular note are the integral equation and
variational formulations that lead to the development of new computational formulations for boundary element and
finite element methods, respectively. An example with closed form and numerical results is included to illustrate some
aspects of the theory. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Theory of elasticity; Boundary value problems; Non-smooth problems; Eigensolutions; Generalized Fourier analysis;
Computational mechanics

1. Introduction

The general theory of fundamental boundary eigensolutions and its relation with the direct integral
equation formulation has been presented for the potential problem in Hadjesfandiari (1998) and Had-
jesfandiari and Dargush (2001a). The application of this theory in computational methods has also been
developed for the potential problem in Hadjesfandiari and Dargush (2001b). The finite element and
boundary element formulations presented there are completely consistent with the theory of potential
boundary value problems, including all those problems that are classified as non-smooth. By adopting this
approach, we obtain a clearer understanding of the computational methods, along with general numerical
algorithms for the practical solution of non-smooth problems. This theory may be generalized to every
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boundary value problem. The field function can be scalar, vector or tensor. In this paper, we develop the
theory further within the context of elastostatic boundary value problems.

Based upon the integral equation representation of an elastostatic problem, the boundary surface must
play a key role in the solution. Consequently, it would seem appropriate to employ basis deformations that
are orthogonal over the boundary. We will see that these deformations can be generated by solving an
eigenproblem in which the eigenparameter appears in the boundary condition. The new concepts that
emerge from this approach seem to have significance for the general theory of elasticity as well as for
computational mechanics.

An elastostatic boundary value problem is considered non-smooth if the domain is non-smooth or
mixed boundary conditions are specified. In these cases, the solution is non-analytic at some points on the
boundary. Thus, the characteristic feature of these non-smooth problems is the presence of singularities in
the traction or higher order derivatives on the boundary. The power of these singularities may be obtained
by a local analysis with homogeneous boundary conditions following, for example, the approach of
Williams (1952). Since most of the problems posed in engineering applications involve either non-smooth
geometries or mixed boundary conditions, we attempt to provide a unified treatment that encompasses
non-smooth problems.

To some readers, the term fundamental eigendeformation might seem to be related to the eigenstrain
term used by Eshelby (1957) to refer to stress-free transformation strains. We emphasize that the funda-
mental boundary deformations presented here are a completely different concept and are also different from
the familiar dynamic eigenmodes used in vibration theory. The new theory of boundary eigensolutions will
be introduced in Section 3. First, however, some well-known relations from elasticity are presented in the
following section for later reference.

2. Basic equations in elasticity

Equilibrium of the stress state g;; in the absence of body forces and moments leads to the following
equations (e.g., Kupradze, 1979)

0ijj =0 (21)

O-ij = O-ji (22)

in domain V, subject to boundary conditions on S. The domain ¥ can be two or three dimensional, simply
or multiply connected. The boundary S is a contour or set of contours in two dimensional (2-D) problems
and a closed surface or surfaces for three dimensional (3-D) domains.

The strain tensor ¢;; is defined in terms of displacements u; (for small deformations only) as

S[j = %(M;J + llj}i) (23)

We consider the material to be homogeneous and linear elastic where the relation between the stress tensor
o, and strain tensor g; is

0 = Cijierr = Cijpatir (2.4)
with Cj; as the tensor of elastic constants which has the following symmetry relations
Cijir = Cjirt = Cijie = Cpayj (2.5)

By substituting the stress tensor from Eq. (2.4) in the equilibrium equation, we obtain the Navier equations
expressing equilibrium in terms of displacements as

Cijrurs; =0 (2.6)
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The traction vector on the boundary is
t; = o;n; (27a)
or in terms of deformation
ti = Cijuern; = Cyjiglig,n; (2.70)
with n; representing the unit outward normal vector.

In general three different boundary conditions may be specified. These are: Dirichlet (u# = & on S),
Neumann (¢ = on S) and mixed (u =% on S, and ¢t = on S, with §,US, =S and S, NS, = 0). If the
problem is well posed, the Dirichlet and mixed problems have unique solutions. The solution for the
Neumann problem is unique excluding an arbitrary rigid body motion.

As we know from the theory of boundary value problems, u is analytic in the domain V. However,
displacement u# need not be analytic on the boundary S. Furthermore, at non-smooth points the traction ¢ is
not defined. In general, ¢ is a piecewise continuous function on the boundary. It should be noted that al-
though the stress tensor and traction can be singular at non-smooth points, the criteria for an acceptable
singularity is the existence of a bounded strain energy in the domain.

Let o}, and g}, be stresses corresponding to deformations ; and v; which satisty the equilibrium equation.
From the reciprocal theorem, we have

N N

We also have for every acceptable deformation

/tl’.‘uidS:/aZ.s;.dV (2.9)
s v

which means that the work of external forces is twice the strain energy %, where

1 u u
%:E/ValjaljdV

By definition the total energy is

n=wu+v (2.10)
where 7" is the potential of the external forces
Y = —/t,-ul-dS (2.11)
s
Then from Eq. (2.9)
n=-u (2.12)

which actually is the minimum for equilibrium.

3. Fundamental boundary eigensolutions
3.1. Introduction
In this section we develop the theory of fundamental boundary eigenexpansion in elastostatics. This

theory gives us a powerful tool to analyze every problem, whether it is solved in closed form or approxi-
mately. In fact, the beauty of this approach is its ability to account for singularity in the solution of
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boundary value problems in elasticity. Furthermore, the energy concepts developed in this section show the
profound nature of the theory of eigenexpansion.

3.2. The boundary eigenproblem

The fundamental boundary eigenproblem for elastostatics is defined as follows: find non-zero deformation
u such that in the domain V

0i;; = Cimtte;; =0 (3.1a)

and on the boundary S
t; = )V(PI:]-MJ' (31b)

where / is an eigenvalue, and ¢;; is a symmetric positive definite tensor which is piecewise continuous and
integrable on the boundary. This tensorial function is called the tensor weight function. In practical
problems we can usually choose this tensor as

b = ®o;;

where 6, is the Kronecker delta and ¢ a positive piecewise continuous integrable scalar function. By doing
so, the fundamental boundary condition reduces to

t, = )v(pu,-

The deformation u; is a vectorial eigenfunction which is called an eigenmode or eigendeformation.

With the classical approach, the eigenparameter is introduced into the governing differential equation
and a specific set of homogeneous boundary conditions are prescribed. In the boundary eigenproblems
(3.1a) and (3.1b) however, the elastostatic differential operator remains intact, while the eigenvalue is in-
serted into the boundary condition. Thus the eigendeformations u; associated with Egs. (3.1a) and (3.1b)
satisfy equilibrium in the domain V. Furthermore, the infinite sequence of eigenmodes for Egs. (3.1a) and
(3.1b) can be used as a basis for all solutions to boundary value problems in the domain V" governed by the
Navier equations with arbitrary well-posed boundary conditions on S.

3.3. Rigid body eigenmodes
We know that rigid body motion cannot generate any strain or stress. Consequently, a rigid body motion
is an eigenmode corresponding to 4 = 0 with the general form
u, = (a;j — 5,‘]))@' + Ci

where a;; is a constant proper orthogonal tensor showing rotation and ¢; is a constant vector showing
translation. In 2-D the multiplicity of 2 = 0 is 3 (two translations and one rotation) and in 3-D the mul-
tiplicity is 6 (three translations and three rotations). Of course, here in the small deformation theory of
elasticity, we deal with infinitesimal values for rotation and translation. We can show in the limit that the
tensor (a;; — J;;) approaches to an anti-symmetric tensor. Rigid body motion can then be written in terms of
a rotation vector ;. Using the cross product

u=Qxx+c
or in index form we have
U, = S;jk.ijk —+ C;

where ¢;; is the permutation tensor.
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3.4. Rayleigh quotient and eigenenergy

Multiplying both sides of the fundamental boundary condition (3.1b) with u; and integrating on the
boundary, we obtain

s N

Then
_ fS tiu; ds
fS (pl-juiuj dS

We also know that

/t,—u,-dS:/O',»jS,-jdV
N 14

Therefore
_ Jy oy dV _ Iy Cimatizera dV
Js @yu;dS - [ oyuu;dS
where the right-hand side of this relation is the Rayleigh quotient. In general we write
Jy o6 AV
Js @yui; dS

We already know that the Rayleigh quotient for a fundamental eigenfunction is the corresponding fun-
damental eigenvalue. The numerator of this quotient is twice the strain energy of the body. If we normalize
u;, such that

/(pl-ju,-u/dS =1 (34)
N

) (3.2)

y) (3.3a)

R{u} = (3.3b)

then for boundary eigenfunctions
v

We may call 4 the eigenenergy with respect to the weight function ¢,;. In other words, the strain energy
generated by an eigenmode is half of the corresponding eigenenergy. That is,

U= (3.6)

3.5. Basic properties of the boundary eigensolutions

As in the potential problem, we have the following theorems for the fundamental eigenproblem of
elastostatics defined by Eqgs. (3.1a) and (3.1b):

Theorem 1. At least one eigensolution exists.

Theorem 2. All of the eigenvalues are real.
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Proof. Let (A,u;) represent an eigensolution of Egs. (3.1a) and (3.1b). If (4,u;) is complex, its complex
conjugate is also an eigensolution of Egs. (3.1a) and (3.1b). By using the reciprocal theorem for u; and u;, we
obtain

N N

Using the fundamental boundary condition, this becomes

/l/ (pl-jujﬁ,-dS: Z/(piiﬁjuidS

N s

By interchanging indices i/ and j on the right-hand side and putting ¢,; = ¢, we obtain

(/AL — )T) / (pijuiﬁde =0

N

However ¢;; is positive definite everywhere on the boundary, thus

/(pi/ufl?de >0

N

This requires 2 = Z, which means that A is a real number. [

Theorem 3. All non-zero eigenvalues are positive.

Proof. This follows directly from the Rayleigh quotient expressed in Egs. (3.3a) and (3.3b). O

Theorem 4. The sequence of eigenmodes are boundary orthonormal with respect to ¢,;.

Proof. We prove this theorem for distinct eigenvalues. Let (4;,u.") and (4, u”) be two eigenmodes where

i i

A # A,. By applying the reciprocal theorem for these two eigenmodes we obtain

/tﬁ”uﬁ”dS:/t}”uﬁ%S
s s

Using the fundamental boundary condition, this becomes
A / (pijuj(.l)ufz) ds = ig/ (piiuﬁz)ugl)dS
N s
By interchanging indices i and j on the right-hand side and putting ¢,; = ¢,;, we obtain
(hh — 4) / (piju,(l)uf) ds=0
N
However since 1; # 1,, we have

/ qoijul(-l)uf) ds=0 (3.7)
N

Gram-Schmidt orthogonalization can be used for eigenmodes associated with non-distinct eigenvalues. In
Appendix A the normalized rigid body eigenmodes corresponding to 4 = 0 are given for 3-D and 2-D cases
when ¢; = ¢o,;. U
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In general, we have

/ gol:iuf-m)uj(") dS=0, m#n (3.8a)
N
and by assuming normalized eigensolutions

/q)u Mumds =1, m=1,2,... (3.8b)

Now, we investigate the properties of fundamental eigenmodes in the domain. By multiplying Eq. (3.8a)

with 4,, and using the fundamental boundary condition tf-'") = b,,,qoﬁuf’") with ¢; = ¢,;, we obtain

/S £"u"dS =0, m#n (3.9a)
Similarly

/Stf")ul(.m) dS=0, m#n (3.9b)

By adding Egs. (3.9a) and (3.9b)
/[("” Y u™]dS = 0
S

and using Eq. (2.7a) for the traction

/S[( —I—O' ul ]n]dS 0
Now by applying the divergence theorem
/[( +0' ut ] dV =0
V
or
/[gg;fj?ugnw au™ 4 ou) + U™ ]dV = 0 (3.10)
Vv

From the equilibrium equation (3.1a)

(m) (n)
0,5 =0, 0;;=0

Then in Eq. (3.10), we have
/[Em +68]dV 0, m#n
14

and by using Eq. (2.4) along with the symmetry conditions in Eq. (2.5)

Gl{]fﬂ)gl(j'}) _ Gl(;')gl(j{'z)
Therefore
/Vag;">s§7>dV =0, m#n (3.11)

Furthermore, it is easily proved
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Coptt)) ) dV = ) =1,2
,Ak,uk_’lui,l = Am, m=1,2,...
v

or

U = /V(;;;%E;”dV = %A (3.12)
which is exactly Eq. (3.6).

Eqgs. (3.11) and (3.12) represent properties of the eigenmodes in the domain V. These properties are most
interesting from an energy perspective, which reveals that the eigenmodes are energy orthogonal. Notice
that although the tensorial weight function ¢,; does not appear in the volume integrals, it does affect the
eigenmodes.

3.6. Integral equation method

As is well known, every boundary value problem can be transformed into an integral equation. The
direct boundary integral equation for the elastostatic problem without body force is written (e.g., Banerjee
(1994))

%@w@+La@mwmwm=4@ﬁxwww@ (3.13)

where the kernel G;;(¢,x) is the displacement in the 7 direction at point ¢ generated by a concentrated unit
force at x acting in the j direction. Thus, for the isotropic case

1 _ N I LAY i -
Gl.j(f7x) _ { STEﬂ(ll—V) [(3 4v)611 In r:;‘ 2 ] Tn 2-D (3143)
16mi(I—v)r [(3 —4v)o, + ,—z’} in 3-D
41T(117V)7' [(1 - 2V) (nl}% - nl% + 5ijnky’_]'c> + zylr#nk} in 2-D
Fy(e,x) = (3.14b)

m [(1 —20)(m2 — 2+ Sy ) + ”:—3’“;14 in 3-D
where y; = x; — &, r is the distance between points x and &, and »; is the outward unit vector normal at x on
the surface. Meanwhile, the constant fi is the shear modulus and v is the Poisson ratio. It should be
mentioned that the 2-D kernels in Egs. (3.14a) and (3.14b) are for the plane strain case. The kernel cor-
responding to the plane stress case can be obtained from the plane strain kernel given above by using an
effective Poisson ratio v = v/(1 4 v). By substituting the fundamental boundary condition Eq. (3.1b) into
Eq. (3.13), we obtain the boundary eigenproblem in integral form

%@M@+L@@nmmwm=A£@@n%mwmww (3.15)

This is an integral representation of the fundamental eigenproblem (3.1a) and (3.1b). The solution of Eq.
(3.15) has all of the characteristics defined previously. The eigensolutions of Eq. (3.15) are real, with non-
negative eigenvalues and boundary orthogonal eigenmodes. Consequently, the spectrum of the direct in-
tegral equation representation of the elastostatic problem is real for every positive definite, integrable
boundary weight function ¢,;, and the eigenmodes form an orthogonal set. Although the spectrum analysis
of the indirect integral equation formulation has been studied extensively (Kupradze, 1979), a similar
treatment has not appeared before in the literature for the direct method.
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Furthermore, we can introduce the weighted traction t*, where

i = @t} (3.16)
Then Eq. (3.13) can be rewritten
@@+ [ FyEx)dSe) = [ Gylen)ouonf () st (.17
N N

This equation will be further substantiated in the following sections.

In non-smooth problems involving stress and traction singularities, the weight function ¢,; can be chosen
to capture the asymptotic behavior of the traction near the singular point. The suitable ¢,; may be derived
from a local analysis (Williams, 1952). The integral equation (3.17) then involves only bounded solution
variables u(x) and #?(x). In other words, #7(x) is piecewise regular.

In a practical sense for engineering application, we may wish to solve discretized versions of Egs. (3.15)
and (3.17) by using the boundary element method (e.g., Banerjee (1994)). Numerical solution of Eq. (3.15)
allows us to study the character of the discretized integral equation representation of the elastostatic
problem, while the computational algorithms associated with Eq. (3.17) permit the direct solution of
boundary value problems. These new boundary element formulations will be presented in Part IT of this
paper (Hadjesfandiari and Dargush, 2001c), and then used to solve a series of non-smooth boundary value
problems involving cracks, notches and bimaterial interfaces.

3.7. Variational formulation

From the Rayleigh quotient (3.3b), we can see that for any boundary eigensolution, say (4,,u,), the
functional R{u,} = 7,. Furthermore, it is easy to show that the Rayleigh quotient is an extremum for
boundary eigenmodes. Taking the first variation of R{u} from Eq. (3.3b), we obtain

2['[’/ Cijklgij Sﬁk]dV} [fS (piju,ude} — Z[IV C[jk[gijgk]dV] [fS (p,:/ui SquS}

OR{u} =
) [ fs ‘/’zt/“i”jds]z

Substituting Eq. (3.3b) again produces
[ [, Cijiti;dew dV] — R{u} [ [ ¢, ju; du;dS]
[ /s @yuiu;dS]
By using the divergence theorem, we obtain
Js(ti = R{u} @, u;) du;dS — [, 07 0u;dV
Js @uiu;dS
Now du; is an arbitrary variation in the domain and on the boundary. For an extremum R{u},
OR{u} =0 (3.18)

and we must have

OR{u} =2

OR{u} =2

;=0 inV
and

t; = R{u}p,u; onS
This defines the fundamental boundary eigenproblem, where R{u} = A. Therefore, every eigenmode ex-
tremizes the Rayleigh quotient, and value of this quotient is the eigenvalue corresponding to the eigenmode.

As we said when the eigenmodes are orthonormal, twice the strain energy of the body for each eigen-
mode is equal to the corresponding eigenvalue. We have the following interpretation by using strain energy.
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Extremize the strain energy

1
7= /Vaijgly.dy (3.19a)
such that
[ oyuyds = alf =1 (3.19b)
N

Define a new functional %{u} by using the Lagrange multiplier o such that
Wi} = w{u) — o / ¢ty dS (3.20)
s
Taking the first variation of % {u} produces
v s
Then after employing the divergence theorem, this becomes
6021 = /(t, — ZOCQDU) 61/[,‘ ds — / Gij.j 81/{[ ds
N Vv
Consequently, in order to have 8% = 0 for arbitrary du; in the domain and on the boundary, we must
satisfy
O-ijJ =0 in 14
and
t;=2aqpyu; onsS

Therefore u is a generalized fundamental eigenfunction and « = 1. For these extremum conditions cor-
responding to an eigensolution (4, u), we have

U{u} :%/V(ijﬁij)d[/:%/sii%ds

Then using the generalized fundamental boundary condition, along with the constraint (3.19b), we find that
U{u} = 1. Thus, the Lagrange multipliers o in #{u} are the expected eigenvalues of the fundamental
boundary eigenproblem (3.1a) and (3.1b) and the extremum values of #{u} are exactly half of these ei-
genvalues.

What is the consequence of the extremum conditions?

The admissible deformation u; which minimizes % under the constraint (3.19b) is the eigenmode ul(-l) and
the minimum value of % is half of the corresponding eigenvalue ;. If we impose not only the normalizing
condition (3.19b), but also the orthogonality condition

/ <p,-juf-1)ude =0
s

then the function which minimizes % is eigenmode u§2> and the minimum value of the strain energy
U{u?} = %/12 is half of the associated eigenvalue A,. Continuing this process, the successive minimum
problems

o 1
minimize #%{u} = 3 / a6y dV
Vv
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subject to / ¢ uiu;dS =1
s
and
/(pl-jul(-m)u,-dS =0, m=12,...,n—1
s
define the eigenmodes #™ and half of the corresponding eigenvalue 4, equals the minimum value % {u}.
We can deal with the Rayleigh quotient (3.3a) and (3.3b) instead of the strain energy %. Then we drop

the normalization condition and the minimization problem becomes:

O'l"S,"dV
minimize R{u} = %
N/}

subject to /(piju,(.m)ude:O, m=12...,n—1
s

which again define the eigenmodes #") and the corresponding eigenvalue /, equals the minimum value
R{u"m}.

3.8. Completeness of the system of boundary eigensolutions
Based upon the results from the previous section, we have the following theorems:
Theorem 5. The fundamental boundary eigenproblem has an infinite collection of eigenvalues such that

(1) the eigenvalues form an increasing sequence, Jg <o < - <4, < ...,
(1) the eigenvalues 1, become infinite for n — oo.

Condition (ii) implies, in particular, that each eigenvalue has only a finite number of multiplicity, and
that only a finite number of eigenvalues can be negative. From Theorem 3, of course we know there are no
negative eigenvalues. The most important consequence of the unboundedness of the eigenvalues is the
completeness of the system of eigenfunctions.

Theorem 6. The system of eigenmodes of the fundamental problem is complete.
Proof. Assume w to be an L,-function on the boundary S with respect to @, which means
/(pijw,ijdS = |w|* < 0 (3.21)
N

We can imagine that w is the boundary value of a solution of an elasticity problem in the domain V.
Approximate w by the first N eigenmodes and let

N
w' = chu(”) in Vus
n=1

Then by defining
&N =w—w"

an approximation in the mean implies that the following error is a minimum:
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N N _N
E / pye' e dS =
Assume that the eigenmodes are normalized. Then it can be proved very easily that for minimum error

Cp = /w @ -u"ds = /(pijw,«uj-")dS
s s

By inserting these values, the minimum error is

N
EN — / @ ww;dS — Zci =0
N . n=1

which is the Bessel inequality. For completeness we have to prove that the equality holds in the limit as
N — oo.
We know

/ qoijeﬁvuj(-”)dS: 0 forn=1,2,...,N
s
and because w is an elastic solution which satisfies equilibrium
/ o5 u Ndy =0 forn=1,2,.
14
From the variational method and the minimal property of Ay,;, we have
It / @ e} el dS < / S fj dv (3.22)

where oij and SZ , represent the stress and strain associated with the displacement eV, respectively.
However, the right-hand side in Eq. (3.22) can be rewritten

N N
w w E ) E ('l) eN
/V g4V = /V ( oy 7y ) ( A > v

m=1 n=1

or

/V w WdV Z/an +/O’U SU drv

and therefore the term [, al/ sl/ dV is bounded from above.

By virtue of the inequality (3.22) and the infinite growth of Ay,
EV = /(p,jeNeNdS—>0 for N —

This proves

N
/ (Pi/WindS — Zci =0 for N — o0
S

n=1

and therefore establishes the completeness of the eigenfunctions. Consequently, we can write the Parseval
equality
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2
/S @ wiw;dS ;cn O (3.23)
The completeness of eigendeformations means that we can approximate every piecewise continuous in-
tegrable function defined on the boundary S in the mean to any desired degree of accuracy by choosing a
sufficient number of eigenmodes.

From the discussion in this section, one can conclude that the metric space of fundamental boundary
eigenmodes is a Hilbert space.

Formally then the Fourier series or fundamental expansion for every L,-function w may be written

W= chu(”) in Vus (3.24)

n=1

where ¢, is the Fourier coefficient defined by
ey = / w-® u"dS = / (pi/wiuﬁn) ds (3.25)
s s

We consider the continuation of the function w in the domain such that it is the elastic solution to an
elasticity problem with the boundary displacement w specified. In general, w here can be discontinuous on
the boundary.

In the theory of fundamental eigenmodes, we considered ¢,; as positive definite. We should emphasize
this property is a necessary condition for having a complete set of eigenmodes for representing all given
elastostatic problems. If ¢, is positive semi-definite on some parts of the boundary, then the eigenmodes
follow all the previously mentioned theorems, but are complete for representing only those problems in
which 7 is normal to any principal directions corresponding to zero principal value of ¢,; on those boundary
segments. One interesting case is when ¢,; = 0 on some parts of the boundary. The eigenmodes are then
complete for representing only problems with # = 0 on those parts of the boundary.

3.9. Convergence of generalized Fourier series

We know that the fundamental expansion converges in the mean to w on the boundary. Does the ex-
pansion converge to w on the boundary and in the domain?

The following theorem gives convergence behavior for all points.

Theorem 7. The generalized Fourier series (3.24) converges at each point x in the domain to w(x). If w is
piecewise regular on the boundary S, then the generalized Fourier series (3.24) converges at each point x on the
boundary S to the principal mean value w (Appendix B).

The degree of continuity of w determines the speed of decrease of ¢, for higher modes. The coefficients ¢,
decrease faster when the function w is continuous. When w has a discontinuity at one or more points, the
speed at which the coefficients decrease is not as fast.

3.10. Generalized Fourier series or fundamental expansion for u, t and t®

The generalized Fourier series or fundamental expansion for displacement u is

u= ZlAnuW inyus (3.26)
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where for normalized eigenmodes 4, is the Fourier coefficient defined by
A, = / u-®-u"ds = / o dS (3.27)
s s

The Parseval equality becomes

S a2 = / oty dS = [l (3.28)
n=1

Theorem 8. The fundamental expansion converges uniformly to u in the domain V and boundary S. The ex-
pansion for first and higher order derivatives of u converge uniformly and absolutely in the domain V.

What can be said concerning traction on the boundary? For the gradient of deformation, we can write

oy & ou"
u =34, Y oinvus
ot aX/

axj

For strain and stress we have the following

ey = A& inVUS (3.29)
n=1

oy =Y A,0f inVuUS (3.30)
n=1

and for traction on the boundary S
=Y 4,4" onS (3.31)
From the fundamental boundary condition #") = i,lfpijuﬁ”). Then on S
b= 0y> Al (3.32)
n=1

By using the weighted traction ¢ defined in Eq. (3.16)
= q)[jt;.o (3.16)

we can write
o0
= E A, du™  on S
n=1
or

"= Au"” onS (3.33)
n=1

In this equation for boundary points the series converges to the principal mean value of the weighted
traction. What is the meaning of this series for internal points? The value of this series is the elastic solution
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o0
v=> Au" inVUs
n=1

whose boundary value is #°.

As we discussed before, if #? is piecewise continuous on the boundary S, the formal expansion (3.33)
converges uniformly to #? in every closed set on S containing no discontinuity. This means the Nth partial
sum of the formal expansion of ¢?

N
th(x) = A, ju" ons (3.34)
n=1

cannot approach the function #? uniformly over any set containing a point or line of discontinuity of #?. It
is seen that the series oscillates near to the discontinuity. This is a generalized form of Gibbs’ phenomenon
which has been studied in detail in trigonometric Fourier series and integrals (e.g., Carslaw (1950)).

For physical problems we assume that u is continuous everywhere, but that ¢ can be piecewise contin-
uous. In practice we try to choose ¢,; such that ¢” becomes piecewise regular. The expansions for  and #?
are complete and converge in the mean. In general every vectorial function w(x) defined on the boundary S
can be expanded in terms of boundary eigenmodes if and only if w(x) is mean square integrable (L,-
function) on the boundary with respect to ¢;;.

By using Egs. (3.11), (3.12) and (3.27) we derive the following expression for A4,

1 n
A= /Va,-,gfj>dV for A, # 0 (3.35)
or
/ o6 dV = 1,4
ij%ij — Andp
4
As we said, the displacement u is continuous everywhere. Now we add the requirement for strain energy to

be bounded. We derive an expression for strain energy in terms of eigenenergies. By using expansions the
strain energy can be written as

1 o0 o0
U = 3 / [Z/l,,An(piju;")] [ZAmuE"I>] ds
S La=1 m=1

Using the orthogonality property
IS, 2 (), ()
U = 5;@/1” /S o " uf" dS (3.36a)
If the eigenmodes are normalized, then
1 o0
U ==Y )A 3.36b
32 (3.36b)

which means that the strain energy can be expressed as an infinite series of the eigenenergies.
Let us also obtain a new expression for the Rayleigh quotient. From Eq. (3.2), we have

fS tiu; ds . 29
Js @yui;dS - ||u®
and then by substituting Egs. (3.36b) and (3.28) in the right-hand side, we derive

R{u} =
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Y
R{u}zizioé Ve (3.37)
n=1“"n

3.11. Behavior of boundary eigensolutions and Fourier coefficients

We should mention that as the eigenvalues become larger, there are a greater number of oscillations in
the associated eigenmodes on the boundary. This means that the number of zeros of the eigenmodes on the
boundary increases for higher modes. This is the result of the orthogonality of higher eigenmodes to lower
eigenmodes.

It can also be shown that similar to other eigenvalue problems (Courant and Hilbert, 1953) by assuming
that the eigenmodes are normalized such that

/ goi/ul(")u;"> ds =1

N

there is a number C > 0 independent of n such that

| = \Ju"u" < C (3.38)

where 4] is the magnitude of the vector u™.
It is seen that the order of eigenvalues for higher modes are independent of the tensor weight function ¢
and

A= {O(n) in 2-D as n — oo (3.39)

O(y/n) in 3-D as n — oo

In the theory of elasticity the displacement field u is continuous everywhere, even on the boundary. If ¢;;
is such that u is an L,-function with respect to ¢;;, then the Fourier series for acceptable u is

o0
u= X:A,,u(’1> in Vus
n=1

where A, is the Fourier coefficient defined by

A,,:/u.(D.u(”)dS:/(pl:/_uiuJ(_n)dS

N N

with

ZA}% = / Py uiu;dS < oo
n=1 N
If @, is such that #” is an L,-function with respect to ¢,;, then
t°=> Ad" inyvus
n=1
where

A:’ == ;unAn

It is obvious that
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1\2
(|A2’|_/1_) >0 forn>ng

n
or
14,1

n

1
A% -2 +}—2>0 for n > ng

where sy is the number of rigid body modes. Then
A’ 1
ZM §A:12+? for n > ny

A
n n

or for coeflicient 4,

1
2|4, <47 —&—;—2 for n > ng

n

Because the boundary weighted traction vector # is an Lp-function with respect to ¢;;

@717 dS = / (il dS =% A% <
Then, by knowing 3 ° . (1/ J2) < oo from the flexibility concept which will be discussed later, we see that
the series

- 1
2
N
n=ng+1 Ay

is convergent. Therefore the series ) °, |4, is convergent, which means )~ 4, is absolutely convergent.

By knowing that |u®| = (u"u!")"* < C no matter the value of n, we can see that the higher modes have

less contribution to Fourier expansions. This is a very important result in computational mechanics.
Strain energy is bounded, then

tiu,vdS = / qo,u,[(/)dS = & )WA% < 00

which means that as n increases, 1,4> — 0. In other words 4, decreases faster than 1/ (/1,7)1/ 2 In practice we
choose ¢;; such that

tit,f"dS:/@,..t?’t‘.”dS: A < o0

which means 4, decreases faster than 1/4, such that
A, — 0 asn— oo

We will prove that the series Y-, 4,4 is absolutely convergent. We see that
|4,u™| < C|4,|

and the series > >~ C|4,| is convergent. Then from the Weierstrass’ M-test theorem the series > oo A,u'"
converges uniformly and absolutely on V' U S.

What is the impact of continuity in these expansions? The behavior of the coefficients and the uniformity
of convergence is the answer.
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We can see the expansion (3.26) for u converges faster than expansion (3.31) for ¢. By choosing a suitable
@ to make #? piecewise regular (i.e., bounded), we increase the rate of convergence of its expansion (3.33)
beyond that achieved by the expansion (3.31) for #. This is an important conclusion which we use in
computational mechanics in Part II.

In Part II, we show that the computational methods such as finite element and boundary element
methods follow the fundamental boundary eigenmodes theory with ¢, = d;;. If the number of boundary
degrees of freedom in the model is NV, solutions are based on N eigenmodes. If we assume that we have exact
eigenmodes, the approximate expansion for u and ¢ are

N
uy =Y Au", VUS (3.40)
n=1
and
N
tv=> Au" onS (3.41)
n=1

These expansions approximate the quantities in mean square value. However, there is a difference in the
character of the expansions. The expansion (3.40) converges uniformly to u, because u is continuous
everywhere. In contrast the expansion (3.41) does not converge to ¢ uniformly at points on the boundary
where t is discontinuous. Tractions may have a singularity at these points. The expansion (3.41) is a
summation of a finite number N of continuous eigenmodes. From analysis we know this summation is a
continuous function on the boundary. If N approaches infinity, the summation can be discontinuous and
capture the singularity of tractions. The finite series (3.41) is a continuous function which has bounded
values and cannot show the singularity. The remedy is to choose such a function @ that makes #” piecewise
regular, which means still that it will have the discontinuity but now exhibit only bounded values. The
approximate expansion for ¢? is

N
th(x) => Au" onS (3.42)
n=1

Keep in mind that the fundamental boundary eigenmodes in Egs. (3.41) and (3.42) are different. The former
are obtained with respect to ¢,;; = d;; on the boundary, while the latter are based on a special @ which takes
care of the singularity. The expansion (3.42) has Gibbs’ oscillations near the discontinuity, but it oscillates
about finite values. These ideas will be used in Part II to develop new computational formulations.

3.12. Analyticity of eigenmodes for ¢,; = d;; and non-analytic eigenmodes

Let us consider the case of the fundamental boundary eigenproblem for ¢, = J;. The interesting
character of this case is that the eigenmodes are analytic on the boundary. The reason is that the funda-
mental boundary condition becomes

t=/Ju onS

where u is an eigenmode. The traction ¢ of the eigenmodes is bounded, because u is bounded. Now we can
consider ¢ as a vector displacement field continued in the domain such that it is an elastic solution which
satisfies the boundary condition

== u onsS

where #[!! is the traction of displacement field # on the boundary. Again we continue #!! in the domain such
that it is the displacement of an elastic solution. We see
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2 =2 =72u ons
where t is the traction of displacement field 7'/ on the boundary. By repeating this process
=2 = My on S

Thus we see that ¢”) is related to the (p + 1)th derivative of # which is bounded even on the boundary. This
proves that a Taylor expansion is possible in the neighborhood of boundary points no matter whether the
boundary is smooth or non-smooth and the eigenmodes are analytic on the boundary S. Although this is an
interesting property, it is not suitable for the practical solution of non-smooth problems involving, for
example, cracked and notched bodies.

In Part II, we will show that the traditional boundary element and traction oriented finite element
methods follow the theory of fundamental eigensolutions with ¢,; = J,;. This means that the solutions
approximate the singular stress distribution in terms of a partial sum of a finite number of approximated
eigenmodes. But this partial sum is a continuous expression which cannot capture the behavior at singular
points. The partial sum converges far from singular points which can be explained by the Saint-Venant
theorem, a property common to all elliptic problems.

Although the analyticity of the eigenmodes with ¢,; = d;; is an important property as mentioned pre-
viously, alternative weight functions are preferable in practice when dealing with non-smooth problems.
Instead for these problems, we may utilize non-analytic eigenmodes obtained by choosing suitable dis-
continuous and even singular ¢,;. For example, appropriate weight functions can be constructed from a
local analysis around singular points. In 2-D, Williams (1952) has given the asymptotic behavior of stresses
around a notch tip as #~! where r is the radial distance from singular point and y is a parameter depending
on geometry, material properties, and type of boundary conditions. If we take ¢, = #~18;;, then the ei-
genmodes corresponding to this weight function are non-analytic and help to promote convergence in a
systematic way. These ideas will be discussed in more detail in Part II.

3.13. Fundamental coefficients for BV Ps

Dirichlet problem. Assume the value of displacement u is prescribed everywhere on the boundary such
that u = f(x) on S, where f(x) is an L,-function with respect to ®@. Using Eq. (3.27), we obtain the fun-
damental coefficients as

A, :/f~d5'u(")dS:/(pijﬁuj<-n)dS (3.43)
S S

assuming orthonormalized eigensolutions.
Neumann problem. Assume the value of traction # is prescribed everywhere on the boundary such that
t = g(x) on S, where g(x) is a mean square integrable function satisfying the equilibrium conditions

/Sg(x) ds=0
and
/Sx x g(x)dS=0

From the expansion (3.32), we obtain

1 1
An = / g-u"ds = T / guds  for 2, #0 (3.44)
n JS n JS
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assuming orthonormalized eigensolutions. Coeflicients corresponding to A, = 0 are not determined, be-
cause we can add an arbitrary rigid body motion to the solution in the Neumann problem.

Mixed problem. In this case, the value of ¢ is specified on some portion of the boundary and the value of u
is specified on the rest of the boundary. In Section 1, we classified this problem as non-smooth, along with
general problems involving corners, notches and cracks. The common feature of all of these problems is
singularity of the solution. Many practical engineering problems are of this type. We may still use the
relationships inherent in Eqgs. (3.43) and (3.44), but we cannot obtain a closed form solution for the fun-
damental coefficients in general. This case is related to methods such as dual series equations for bounded
domains and dual integral equations for unbounded domains (Sneddon, 1966), Hilbert problem (Mus-
khelishvili, 1953) and the Wiener—Hopf technique (Noble, 1958). The numerical solution of mixed problems
is addressed in Hadjesfandiari and Dargush (2001b) and Part IT by introducing new boundary element and
finite element formulations.

We should emphasize that, in general, the fundamental boundary eigensolutions are not available in
closed form since these are dependent on an arbitrary tensor function and the shape of the domain. In
reality finding the coefficients in closed form is almost impossible. However, in the case of circular and
spherical domains for certain weight functions we can derive these modes. Section 4 provides the details for
a circular domain.

More importantly, the mathematical concepts direct us toward a better understanding of elastic
boundary value problems and provide a useful strategy for computational mechanics.

3.14. Virtual work theorem

Now we try to give the weak formulation for fundamental boundary eigensolutions. This formulation
can be derived from the principle of virtual work, which can be written

vV N

with the variation du; considered on the entire boundary S. Notice that the boundary on the right-hand side
of Eq. (3.45) is the entire boundary S. The variation of du; is now incompatible with the essential boundary
conditions. By considering #; = ¢,;¢/, we have

By inserting the fundamental boundary condition 77 = Ju;, we have
/VO','jBB,‘jdV = )»,/S (p,-jujBude (347)

This is the weak formulation for fundamental boundary eigensolutions. This result can, of course, be used
to formulate finite element methods. In Part II, a discretized version of Eq. (3.47) is used to develop a finite
element formulation for the fundamental eigenproblem. Furthermore, the above variational framework
(3.46) leads to the development of a traction-oriented finite element method that has distinct advantages
over existing approaches for the solution of general smooth and non-smooth boundary value problems.
Details of this finite element formulation and the associated numerical implementation are also presented in
Hadjesfandiari (1998) and Part II. In the next section by defining the boundary stiffness kernel we give the
virtual work formulation exclusively in terms of boundary integrals.
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3.15. Flexibility and stiffness kernels

Considering two points x and ¢ belonging to the domain ¥V, we can define the tensorial kernel

00 (n) (n)
u; u; (x
pij(éwx): Z M7 xaée VUS (348)
Jon

n=ng+1
Here, for simplicity we consider eigenmodes corresponding to the case ¢;; = ¢J;;. In this definition, we
exclude the rigid body eigenmodes corresponding to 4, = 0 with multiplicity ng. Then from Eq. (3.48) along

with Eq. (3.32), we see that for every acceptable deformation # which satisfies equilibrium

f: A (&) = /S pi(&,x)4(x)dS(x), EeVus
or
w(@ @) = [ pExn0as. cevus (3.49)

where u is the total rigid body motion. Actually by noticing that the above integral is the solution to a
Neumann problem, the presence of rigid body motion is justified.

In analogy with structural mechanics, the kernel p;;(¢, x) has the character of flexibility. Therefore we call
it the boundary flexibility kernel when the points x and ¢ are on the boundary.

We can see for strain energy

v =5 [wou@as© =5 [ [ pennma@smase (3.50)

Due to self equilibrium of ¢, the rigid body motion in Eq. (3.50) vanishes.
The complementary virtual work is

/S / 1y 06,2)1,()86,(6) S (v) dS (x) = / () 81, (x) S (x) — / R (x) 51,(x) dS (x)
or

N N

/S / Py 9)t5 () 81,(x) dS (1) dSx) = / ) ,(x) ASx) — 3 A / Ul (x) 8t,(x) dS(x) (3.51)

in which 8¢ is an admissible variation of traction ¢. Alternatively, in terms of the weighted traction, we have

nR

/S / D6 2) 0 ()12 () p(x) 527 (x) dS () dS(x) = / (x) ) 37 () dS(x) = >

X / u™ (x) 87 (x) dS(x) (3.52)

s
We can see that for, & € S, p;(&,x) is an elastic solution
C,-jklp,.wj(f,x) =0 inV and é es (353&)

such that on the boundary the traction

(&, x) = Cyjups (&, x)n;(x) = 0s(x, £)0,i — w(X)Zuﬁ’”)(i)ug'") (x) onsS (3.53b)
m=1
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where 0s(x, ¢) is a Dirac-delta function on the boundary S defined in Appendix C. The first term related to
ds(x, &) represents the unit boundary concentrated forces and the rigid body terms represent boundary
distributed tractions for maintaining equilibrium as

/tf,-(é,x) dS(x)=0
S
and
[ st (e.x)dsta) =0
S

Detailed expressions for the summation over the rigid body modes are presented in Appendix A. It should
be mentioned that in Egs. (3.53a) and (3.53b) derivatives are with respect to x.

The solution is given by Eq. (3.48) for £ on the boundary which by continuation defines this kernel for all
points x and ¢ in the domain ¥ US. The kernel p;;(&,x) has a weak singularity like that of the G;(&,x)
kernel in the boundary integral method when ¢ is on the boundary. Thus, the kernel p;(&,x) is an Lo-
function which means

/S / P& X)py(E,3) dS(x) dS (&) < oo

By using the degenerate expansion of p;;(&,x), we can easily see

>
2:?<m (3.54)

n=nr+1"n

o0

which means the series >~ ., 1/ /2 is convergent. (Note that this result was used earlier to prove that
>, A, is absolutely convergent.)
Now consider ¢ on the boundary S and look for an elastic solution m;;(&,x) that satisfies

Cijumu;(E,x) =0 inV and €S (3.55a)
such that on the boundary the displacement
@(x)m;(E,x) = 0s(x,£)o; on S (3.55b)

By using the reciprocal theorem between m;;(¢,x) and an elastic solution u;
[ e 06x) = (X 0)dS(x) =0
s

where
(&, x) = Czjkzmrk,z(x)(f,x)”j(x)7 xes
and by using Eq. (3.55b)

1
/S [(p(x)és(x’ €)0yitr(x) — Cipram1(, x)n;(x)u.(x) | dS(x) = 0

Then
HEE /s Cijump (&, x)n;(x)u,(x)dS(x), E€8 (3.56)

In analogy with structural mechanics, the kernel Cjum,y (&, x)n;(x) exhibits the character of stiffness.
Therefore, we call k;(£,x) the boundary stiffness kernel, where
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PX)ki(&,x) = Cijramp (&, x)n;(x), x,E€8 (3.57)
Then
(&) = / o(x)k;; (&, x)u;(x)dS(x), ¢€S§ (3.58)
s

Now let us derive expressions for the kernels m;;(,x) and k;(£,x) in terms of eigenmodes. By knowing
m;;(&,x) is an elastic solution although not an L,-function, we formally write the expression

my(&x) = S dP (@), s
with
(@) = [ olmy (el () dsw), Ees

N

or
_ / os(x, &)0,u (x)dS(x), €S
S

and finally
a" (&) = u" (&)

Therefore the degenerate form can be written
my; (€, x) Zu "> (x), ¢eS (3.59)

Now, we release the constraint & € S and let £ be anywhere in the domain, so that we have a continuation
for m;;(&,x) as

my; (& Zu<") ”) (x), x,éeVus (3.60)
It is seen that for every point & € U S we have
u, (&) = / Q(x)my(&,x)u;(x)dS(x), EeVuUsS (3.61)
S

This is the solution to the Dirichlet problem in elastostatics. The kernel m;;(,x) is similar to the Poisson
kernel in the potential problem which exists for the circle and sphere in closed form (e.g., Garabedian
(1988)). The kernel is bounded when x and & are internal points and is zero when both x and £ are on the
boundary but not coincident. It has a strong singularity when one of the points is on the boundary and the
other point approaches to it from inside the domain. The singularity of m;;(&,x) is similar to the singularity
of the kernel F};(&,x) in the boundary integral method.

From the definition of &,;(&,x) in Eq. (3.57) we obtain

@(x>kn‘(f,x) = Ci/klmrk./(é7x)n_/(x)a X7£ S S (357)

( ) Vl éx l]klzu un j(X), x,f es

but Cyul”) (x)n;(x) = £ (x) = L,p(x)u” (x). Therefore
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o0

k(&%) = > 2 (O (x), x,E€S (3.62)

n=1

It is easily seen that for every L,-function u,

| 0wk e ) dstr) = S Al (@), Ees

and we derive Eq. (3.58) again
/s o)k (&, x)u;(x)dS(x) =27(¢), ¢E€S (3.58)

Now we continue the kernel in the domain by letting points x and ¢ be anywhere in the domain. Thus,
ki (€, x) Zﬂnu ' (x), x,&e€vus (3.63)

When the points x and & are on the boundary, the kernel %,,(&,x) is hypersingular and the integral in Eq.
(3.58) is interpreted as Hadamard finite part. The singularity is similar to the singularity of the kernel

ljle;’kl (év ) ( )

For stram energy, we can now write

=5 [[a@m@as©) =5 [ [ ootk xu(un ) ds) ase) (3.64)
and the weak formulation or virtual work theorem in bilinear form is

/ / oy (v, )1 (v) S0 (x) S(y) dS (x) = /S £(x) Su;(x) dS (x) (3.65)
or in terms of the weighted traction

[ [ 01000k 00)8x) 450 856) = | o703 (x) 4 ) (3.66)

This boundary integral form of virtual work is actually what the finite element method attempts to resemble
as we will see in Part II.

From the expansions we observe that the kernels p;;(&,x), m;;(&,x) and k;(£,x) are symmetric with re-
spect to simultaneous interchange of the indices and the points x and £. A very interesting relation is that

kn‘(f,x) = Czj/'klmrkj(x)(fvx)nj(x) = Cr/k/mzkl (x f) (5)7 x, e’ (3~67)

which is the result of £,;(&, x) = k. (x, &).
Now we obtain a relation between the three kernels. Let us consider the integral

o M (Ey
/S (& (x, E)pi(€, ) dS(2) / lZAm " (el ( >HZ #’f@]ds@),

m=1 n=ng+1

x,yeVus

or

N

[ ok palen dsie) - 3 ) [ ot @u @ asie
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Using the orthogonality condition

[ ot ma(endsio) - f” @ () (3.68)
which is

[ 0Ok D) 450 = mixy). xyeVUS (3.69)
where

miy (x, ) = my(x,y) — m(x,y) (3.70)

with

1023

mi(x,y) = Y _u” ()u” ()
m=1
For the special case when the points x and y both approach the boundary
1
/ (P(é)ki/(-)ﬂ f)p/k(f7J’) dS(é) = méikés(xmy) - mﬁ(('xay)a X,y € S (371)

N

Alternatively, we could initiate the discussion this way. By the concept of stiffness, we propose the in-
tegral (3.58) for expressing traction in terms of boundary displacement

(&) = / () (k&) (x) dS(x), €S (3.58)

N

In other words, the above integral is the solution to the Dirichlet problem. By viewing the direct integral
equation we can expect that we are dealing with a hypersingular kernel. The fundamental boundary ei-
genproblem is the natural spectral analysis of this integral equation, which is written

Ap(Epul&) = / () (&) (&, ) (1) dS(x), ¢S

N

or
Jui (&) = /S Pk (&, x)u;(x)dS(x), ¢eS (3.72)

This is similar to Hilbert-Schmidt theory and follows its consequences although the kernel is not an L,-
function (Kanwal, 1971). The degenerate form of the boundary stiffness kernel is

k(&%) = iﬂmuﬁ”)(é)uﬁ”(x), x¢es (3.73)
n=1

Similarly, by the concept of flexibility, we can propose the integral (3.49) for expressing displacements in
terms of boundary traction

ui(&) — k(&) = / (&) dSR), EeVUS (3.49)

Of course an arbitrary rigid body motion appears. In other words the above integral is the solution to the
Neumann problem. By viewing the direct integral equation we can expect that we are dealing here with a
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weakly singular kernel. The fundamental boundary eigenproblem is again the natural spectral analysis of
this integral equation, which for non-rigid body modes becomes

u, (&) = }v/sp,-j(f,x)(p(x)uj(x) dS(x), ¢es (3.74)

Again, this is similar to Hilbert-Schmidt theory and follows its consequences. The degenerate form of the
boundary flexibility kernel is

oo (n) (n)
i O -

n=ngr+1

The tensor ¢;; disappears in this form although the eigenmodes depend on it.

The degenerate form of the kernels k;(¢,x) and p;;(&,x) convince us to consider /4, and 1/4, as eigen-
stiffness and eigenflexibility, respectively.

Finally, we note that the kernels p;;(£, x), m;;(¢,x) and k;(&, x) are regular when the points x, ¢ are in the
domain V. They have singularity only when these points are on the boundary S.

4. Closed form boundary eigensolutions

Consider a circular isotropic elastic body with radius « in plane strain deformation. Parton and Perlin
(1977) presented the general solutions for this problem. Here we present the complete set of the boundary
eigensolutions in closed form. In polar coordinates the rigid body eigenmodes (type RB), corresponding to
A =0, are

u, = cos(0)
{ up = — sin(0) (4.1a)
u, = sin (0)
{ue = cos(0) (4.1b)
which are pure translation modes in x; and x, directions respectively, and
u, =0
{ = r (4.1c)

which is the pure rotation mode.
We can show that one set of non-rigid body fundamental eigensolutions corresponding to ¢;; = J;; are

ul =r"cos[(n+1)0]
{ uh = —rsin[(n + 1)0] (4.22)
and
u? =r"sin[(n + 1)0)
{ w2 = rcos[(n + 1)0] (4.25)
with eigenvalues
5 2n (4.3)

a
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where n = 1,2,... These modes, which we designate as type I, are equivoluminal deformations. It can be
seen that the translational rigid body eigenmodes (4.1a) and (4.1b) can be categorized as type I if we put
n =0 in Egs. (4.2a), (4.2b) and (4.3).

The other eigenmodes, which we call type 11, are

w = [kr" — n(r* — a®)r"?|cos|(n — 1)0)]
{ uj = [k + n(r” — @) 2]sin[(n — 1)0] (4.4a)
ut = [—xr" +n(r* —a®)rsin|(n — 1)0]
{ug = [k + n(r* — a®)r"~?]cos[(n — 1)0] (4.4b)
corresponding to
A= %’ (4.5)

where k =3 —4vand n=2,3,...
The stresses corresponding to type I and II eigenmodes are

o' =2pnr'cos|(n+ 1)0]
tly = =2anr"tsin[(n + 1)0) (4.6a)
0]

o) = —2anr"'cos|(n+ 1)

o2 =2 'sin[(n + 1)0]

w2, = 2finr" ' cos[(n + 1)0] (4.6b)
o5 = —2pnr"sin[(n + 1)0)]

ol =2an[r"" — (n —2)(r* — a®)r"*|cos|(n — 1)0)]

2y =2fn[r" " + (n — 2)(* — a*)r"P]sin[(n — 1)0] (4.6¢)
oy =23 + (n — 2)(* — a*)r" ] cos[(n + 1)0]

=2t + (n — 2)(* — a*)r" 3] cos[(n — 1)0] (4.6d)

{ o =2an[—r+ (n - 2)(* — az)rj’j} sin[(n — 1)0]
op = =23 + (n = 2)(r* — a®)r" 3] sin[(n — 1)0]

There is also one single eigenmode (type III)

U =r
o= ”
with

oA 2 (4.8)

(k—1a (1-2v)a

The stress corresponding to this eigenmode is

_ _ 2
0r =00 =15 4.9
{Trl) =0 ( ' )

This deformation is completely radial and dilatational.
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It should be noted that the fundamental boundary condition here is

t,=o0,=Au, whenr=a
{ to =19 = Aup whenr=a (4.10)
and the orthogonality of eigenmodes in polar coordinates becomes
2n
/ 1™ (a,0)ul" (a,0) + u\" (a,0)ul)" (a,0)]ad0 = 0, m#n (4.11)
0

Furthermore, it is obvious that all of the non-zero eigenvalues, except the one corresponding to the type
III radial eigenmode, are repeated. One interesting feature common among eigenmodes is that the stresses
in Egs. (4.6a)-(4.6d) and (4.9) are independent of v (or x), except perhaps for a constant normalization
factor. This finding is in agreement with the well-known independence of the stress distribution from the
Poisson ratio in a 2-D simply connected body.

Next we examine the boundary eigensolutions obtained numerically for the plane strain deformation of
the circle. Let the radius ¢ = 1 and set the material properties £ = 1.0 and v = 0.3. We use a boundary
element method (BEM) based upon the integral equation (3.15). Additional details concerning the nu-
merical implementation can be found in Hadjesfandiari (1998) and in Part II. The discretized model uses 36
quadratic elements for both geometric and functional variation. A partial list of eigenvalues are given in
Table 1 along with exact values. The deformations for modes 8, 14, 18, 25, 27 and 38 are shown in Figs. 1-6.

The 14th eigenmode corresponds to radial deformations, for which we have the closed form eigenvalue

20 E

ST —2v)  a(l— 20 (1 +v)
By substituting numerical values we obtain

A =1.92307
Table 1
Boundary eigenvalues for unit circular disc (E=1,v=0.3,a=1)
Mode Type Exact BEM
1 RB 0.00000 0.43921 x 10716
2 RB 0.00000 0.18575 x 10713
3 RB 0.00000 0.69423 x 1071
5 I 0.76923 0.76923
8 II 1.2821 1.2823
11 I 1.5385 1.5385
14 111 1.9231 1.9231
18 I 2.3077 2.3077
20 II 2.5641 2.5697
25 II 3.4188 3.4394
27 I 3.8462 3.8465
32 II 4.2735 4.3301
35 II 4.7701 4.7879
38 II 5.1282 5.2570
44 I 6.1538 6.1580
50 I 6.9231 6.9291
55 II 7.6923 7.8640
60 I 8.4615 8.4611
65 II 9.4017 9.6650
70 I 10.000 10.177
75 II 11.966 12.482

80 I 13.077 13.105




A.R. Hadjesfandiari, G.F. Dargush | International Journal of Solids and Structures 38 (2001) 6589-6625

-1.07

- undeformed

deformed-8

Fig. 1. Unit circular disc — eigenmode for mode 8.

-1.07

- undeformed

deformed-14

Fig. 2. Unit circular disc — eigenmode for mode 14.

6617

This value is nearly the same as the numerical value from BEM as listed in Table 1. This radial eigenmode
shows the deformation of the body under axisymmetric loading. The normalized form of this eigenmode is

1 r
V2na a

M():O

U, =
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2.0
- undeformed
deformed-18
1.07
> 0.04
-1.0
-2.0 T T T
-2.0 -1.0 0.0 1.0 2.0

Fig. 3. Unit circular disc — eigenmode for mode 18.

2.0
- undeformed
deformed-25
1.07
> 0.04
-1.0 7
-2.0 T T T
-2.0 -1.0 0.0 1.0 2.0

Fig. 4. Unit circular disc — eigenmode for mode 25.

Modes 18 and 27 are shear deformations for which we derived the closed form expressions (4.2a) and
(4.2b). The normalized eigenmode 18 corresponding to 4,5 = (6ji/a) = 2.3077 can be associated with either

u,.:ﬁ(i)%os@@) or \/ZIE(ﬁ)3sin(40)
u(,:—\/zlﬂ(ﬁ)’%sin(w) or ﬁ(g)%os(%))

and eigenmode 27 corresponding to Ay; = (104/a) = 3.8462 can be associated with either
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2.0
- undeformed
deformed-27
1.07
Sy 0.0
-1.07
-2.0 T T T
-2.0 -1.0 0.0 1.0 2.0

Fig. 5. Unit circular disc — eigenmode for mode 27.

2.0
- undeformed
deformed-38
1.07
Sy 0.0 7
-1.07
-2.0 T T T
-2.0 -1.0 0.0 1.0 2.0

Fig. 6. Unit circular disc — eigenmode for mode 38.

1 r 1

u,:m(z)scos(w) or \/ﬁ( )Ssin(60)

W= Az (2) sin(60) or L (2)"cos(60)

As we can see from Table 1, the eigensolutions derived from BEM for higher modes are less accurate.
However, the eigenvalues improve by mesh refinement and the eigenmodes approach to the exact shapes. In
general, we can also observe that the BEM generates more accurate equivoluminal eigensolutions (type I).
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5. Elastostatic problem with body force

All of the above theory pertains to the solution of the Navier equation in the absence of body force. We
now examine the case in which body forces b(x) are present in the volume. Thus, for equilibrium

O'l:/'t/""bi =0 (51)
Oij = 0ji (52)
By substituting from Eq. (2.4) in Eq. (5.1), we derive the Navier equations as

Cijiattey; +b; =0 (5.3)
with the following conditions specified on the boundary

u=f(x) onsS, (5.4a)

t=g(x) onsS (5.4b)
We know, however, that the solution can be expressed as the combination of two solutions

u=u"+u" (5.5)

where #' and u" represent homogeneous and particular solutions, respectively. The homogeneous solution
is the solution of

C,-jk/ulldj =0 (56)
such that on the boundary

u' =f(x) ons§, (5.7a)

' =g(x) ons, (5.7b)
This solution follows the theory of generalized fundamental boundary eigensolutions. Consequently,

u = ZA,,u(") in VuUS (5.8a)

n=1
=% 4,/,u" ons (5.8b)
n=1
On the other hand, #" is then the particular solution of

Cijk[ullcflj + b,‘ =0 (59)
under the homogeneous boundary conditions

u'=0 onsS, (5.10a)

=0 ons5, (5.10b)

This latter solution follows the traditional theory of eigensolutions of the vibration equation. This eigen-
problem can be written

Cijati1; = ©°pv; (5.11)

with homogeneous boundary conditions
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v=0 onS, (5.12a)

t=0 onsS, (5.12b)

where p(x) is an integrable positive weight function in the domain V" and ? is the eigenvalue.

Details concerning the properties of the resulting eigensolutions (w?,v,) can be found in Courant and
Hilbert (1953) and Eringen and Suhubi (1974). These eigensolutions have familiar properties. For example,
the eigenvalues are real and the sequence of eigenfunctions are orthogonal with respect to p in the domain
V

/pv,,,vndV =0 form#n
14

It should be emphasized that these eigensolutions are not orthogonal on the boundary S in general. By
normalizing eigensolutions we have

/pvﬁ,dvz 1, m=12,...
14

One result is that the deformation #™ may be expressed in terms of a series of these eigensolutions. Thus,
with p = 1, we have

W'=>"By" inVus (5.13a)
n=1
where
1 n
B,,:—E/Vb-v“dV (5.13b)

Substituting Egs. (5.8a) and (5.13a) into Eq. (5.5), we find that the solution of Eq. (5.3) with boundary
conditions (5.4a) and (5.4b) can be written

u= Z;A,,u(”) +Y By invus (5.14)

n=1

It is interesting that the solution appears as the combination of two different series of orthogonal defor-
mations. One series is orthogonal on the boundary, while the other is orthogonal over the domain.

6. Concluding remarks

In this paper, we have explored the concept of boundary eigensolutions to elastostatic boundary value
problems. The energetic character of these eigensolutions have an amazing impact in the theory of elas-
ticity. The resulting theory furnishes new insight into the solutions of BVPs. In addition, we find that there
is a connection among the theory of boundary eigensolutions, integral equation methods and variational
methods. In the domain of computational mechanics, this provides a relationship between BEMs and finite
element methods. The flexibility and stiffness tensors show the deep influence of fundamental boundary
eigensolutions in the theory of elasticity.

Hilbert (1912) has mentioned the boundary eigensolutions with ¢ = 1 long ago for the potential
problem, and has even given their relation with the calculus of variations. He did not notice the relation
with the direct integral equation. This theory has been further developed here for elastostatics by intro-
ducing a general positive definite weight tensor function ¢,;, which then provides a unified treatment for
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non-smooth problems in engineering mechanics and allows for meaningful solutions to be obtained. The
analytic eigensolutions corresponding to ¢;; = J;; are the natural result of the traditional integral equation,
but are not powerful for the analysis of non-smooth problems.

The simple numerical example considered in Section 4, based on a boundary element formulation, il-
lustrates some aspects of this new methodology. Convergence in the mean, uniformity of the solution and
Gibbs’ phenomenon are the tools for use in approximation methods, including computational mechanics,
which will be discussed in detail in Part II.

Appendix A. Orthonormal rigid body eigenmodes

The number of rigid body modes is ng = 6 in three dimensions and ng = 3 in two dimensions. We derive
the orthonormalized rigid body eigenmodes corresponding to 4 = 0 with positive definite ¢,; = ¢J;;. For
this case, the normalizing relation is simply

/ ouu;dS =1
s

Let S be the magnitude of the length or the area of the boundary and assume ¢ as a surface mass density.
We define the first mass moment and second mass moment (inertia tensor) as

M = / (px,-dS
N

[ij = / (p(xkxké,»j —xixj)dS
N

For simplicity, we assume the origin is at the center of the mass of the boundary such that
M; =0

and the coordinate axes are principal axes of the boundary surface such that the inertia tensor is diagonal

/ ox1x,dS = / Pxx3dS = / @x3x1dS =0
s s s

Let the principal inertia be

= [fo(x3 +x3)dS
= [io(x3+x)dS
= [so(x] +x3)dS
It is easily seen that the three translational eigenmodes are
1
uf Ve — Oy
\/ JsodS
1
u? = ————0y
Js@dS
1
u = ————0y
\/ Js@ds

or in general
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ul(”) = ¥5n‘
\/ JspdS

which are translations parallel to principal axes. The normalized translation amplitude is 1/(f; ¢ dS)
Also we can see that the three rotational modes are

1/2

”5‘4) = Lt“'ilkxk
VI

u? = L31‘2/ch
" VL

u(~6) = L853ka
VL

which are rotations about principal axes. If the moment of inertia of the boundary surface about an axis p is
I,, then the magnitude of rotation is 1/(Ip)1/2.
In the 2-D case, the rigid body eigenmodes are

1
u?” =—F—=0u
\/ JsodS
1
W = s,
\/ JsedS
u) = L«S-zkxk

It is seen that these rigid body eigenmodes are orthogonal to each other.
Furthermore, for the 3-D case we have

S U (@ () = —

g —5”
m=1 . fS (PdS .
and
6 " . éx3J/3l+ ixzh 1 _1%)511)/2 _%xl)ﬁ
Z“im (u" ()| = RN 7¥aVs X Tt
m=4 - ixm - ,1—1363)/2 %xzyz + ixlyl

while for the 2-D case

2
1
} : (m) (m) _
u; X)U; 7—5,“
Lt ( ) j (y) fSQDdS L]

and

1 —_
)y ()] = — | *22 12
u: '\ x)u;
[ (x)u;” (v)] [—xzyl X1 ]
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Appendix B. Principal mean value
Suppose a piecewise regular function f'(x) is defined on the boundary S.
B.1. Two dimensional domains

Let L, represent the length of arc inscribed in the circle with radius r and centered at £ on S. The principal
mean value of f(x) at ¢ is defined as

= lim— /f )dS(x (B.1)

r—0 L ¢

If we define the limits of f'(x) from both directions at ¢ by f1(¢) and (&), then the principal mean value at
Eis
f(&) =3lr"&) + ") (B.2)

If £(x) is continuous at &, the principal mean value is (&) itself.
B.2. Three dimensional domains

Let A4, represent the area of surface inscribed in the sphere with radius r and centered at ¢ on S. The
principal mean value of f(x) at ¢ is defined as

(&) = lim— /f )dS(x (B.3)
If /(x) is continuous at ¢, the principal mean value is /(&) itself.

Appendix C. Boundary Dirac-delta function

We define the Dirac-delta function ds(x, ¢) on the boundary S such that
ds(x,8) =0, x#¢& (C1)

/SéS(X7 &HdsS(x)=1, ¢e€S (C2)
and for every Lp-function f'(x)
[ st armas =7, ¢es (€3)

where /(&) is the principal mean value of function f(x) at ¢ (Appendix B).
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